

SYMBIOSIS COLLEGE OF ARTS & COMMERCE

An Autonomous College | Under Savitribai Phule Pune University

Reaccredited 'A+' with 3.51 CGPA For Third Cycle By NAAC | College with Potential for Excellence

COURSE TITLE

Application of Mathematics for Economic Analysis

Course Learning Outcomes:

On successful completion of the module students will be able to:

- **1.** To provide a wider and deeper exposure to the Calculus of functions and their application to the discipline of Economics.
- **2.** To help students gain an understanding of how to solve mathematical problems that are common to economic modeling.
- **3.** To facilitate the ability of students to demonstrate the economic applications of differentiation, and use it to formulate economic problems.
- 4. To help in developing the ability to accurately translate complex economic problems into mathematical models and hone the skills to solve the problems through a wide array of mathematical techniques.

Gist of this course	The course is based on basic calculus and application to the discipline of Economics
in maximum 3 to	that would enable students to comprehend mathematical modeling techniques that can
4 lines	be applied to various economic scenarios/problems to find solutions.

Detailed syllabus			
Unit	CONTENTS OF THE COURSE	No. of Lectures	
1.	1. Functions, Limits and Continuity <u>Contents:</u>		
	1.1 Types & Graphical Representation of functions		
	1.2 Increasing and decreasing functions	12	
	1.3 Minima and maxima (Absolute and Relative)		
	1.4 Limits – Direct Substitution, Rationalization and Factoring		
2	2 Title of the Tenior Introduction to Desire time and Economic		
۷.	2. <u>The of the Topic</u> : Introduction to Derivatives and Economic		
	Applications		
	2.1Derivative of a function	15	
	2.2 Rules for Differentiation		
	2.3 Differentiation of Implicit Functions		
	2.4 Cost and Revenue Concepts		
4.	4. <u>Title of the Topic:</u> Fundamentals of Matrix Algebra		
	4.1 Types of Matrices and Basic Matrix Operations		
	4.2 Adjoint and Inverse of a Matrix	17	
	4.3 Solution of Linear Equations – Cramer's Rule		
	4.4 Introduction to Input-Output Analysis		
5.	5. <u>Title of the Topic</u> :		
	Contents: Game Theory	10	
	5.1Pure and Mixed Strategy Solutions	10	
	5.2 Two-person zero sum game		

5.3 Prisoner's Dilemma&Nash Equilibrium5.4 Concept of Expected Utility	
Total Number of Lectures	54

Suggested Reference Books:

- 1. Simon, C. and L. Blume, Mathematics for Economists, Norton, London, 1994
- 2. Chiang, A. C., Fundamental Methods of Mathematical Economics, McGraw-Hill, 1984
- 3. Sydsaeter, K. and P. J. Hammond, *Mathematics for Economic Analysis*, Pearson, Education Asia, 1995
- 4. Intriligator, M.D., Mathematical Optimization and Economic Theory, Prentice-Hall, 1971
- 5. Roberts B. and D.L. Schultze, *Modern Mathematics and Economic Analysis*, W.W. Norton and Company, 1973
- 6. Dowling, Edward T. Introduction to Mathematical Economics. Tata McGraw-Hill Edition

Recommended Readings:

- 1. Michael Hoy, John Livernois, Chris McKenna, Ray Rees and Thanasis Stengos, *Mathematics* for Economics, 3rd edition, MIT Press.
- 2. Renshaw, G. Maths for Economics (2nd Edition, Oxford University Press, 2009)